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Models of message flows in an artificial group of users communicating via the Internet
are introduced and investigated using numerical simulations. We assumed that messages
possess an emotional character with a positive valence and that the willingness to send
the next affective message to a given person increases with the number of messages re-
ceived from this person. As a result, the weights of links between group members evolve
over time. Memory effects are introduced, taking into account that the preferential se-
lection of message receivers depends on the communication intensity during the recent
period only. We also model the phenomenon of secondary social sharing when the re-
ception of an emotional e-mail triggers the distribution of several emotional e-mails to
other people.
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1. Introduction

The World Wide Web (WWW) is the location of various human actions that are

of interest to many physicists because of the plethora of available data1–10 and the

complexity of phenomena taking place in techno-social networks. An example is the

bursty nature of human activities in cyberspace (e-mails, web-browsing) considered

by Barabási11,12 to be a consequence of decision-based queuing processes. Since

activity patterns in e-communities, e.g. social groups emerging due to interactions

on the Internet,16–18 are now better understood,13–15 one can ponder more specific

issues related to interactions between users in the e-world. Until now, there have

only been limited results regarding the influence of emotions on the structures of e-

communities. This issue is specific in the sense that communication via the Internet

is different than meetings in the real world. However, emotions are also expressed in

e-mails and even more in anonymous comments on blogs or in Internet discussions.

What are emotions? There is no agreement among psychologists about a common
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definition of this phenomenon. Here, we shall understand it as follows: “Emotions

are caused by information processing, so called appraisals, that relates internal or

external events to personal relevance and implications, taking into account whether

the individual can cope with these and how they relate to personal and social

norms.”a An external event for a specific agent in cyberspace can be as basic as

a message containing information that evokes an emotion because of the receiver’s

personal connection to that message. It is possible to measure the emotions of

individual users using a specific equipment.19–21 One can also efficiently detect

emotional content in a text22–24 employing the methods of machine learning.

To describe social relationships one can use network-based models. In the first

approximation, the presence of any social interaction is shown as a link between

two group members. Such networks evolve over time as new group members join

and new social interactions occur.25,26 Evolving weighted networks are a natural

extension of unweighted ones.33,34 Weight expresses the strength of a social link

that can be measured, for example, by the frequency of existing mutual contacts.29

It is worth stressing that weight distributions in social networks33 do not always

follow a power law, as might be expected from the model developed by Barrat

et al.27

Several models of weighted social network have been studied in the literature.

Results of the model by Kumpula et al.,34 which assumes a fixed number of users

and evolving values of weights between them, are in agreement with data about

community structures in telephone networks. Another example of successful mod-

eling of social interactions is the paper by Singer et al.,29 where the authors define a

possible friendship as a function of the total number of contacts between the agents

and obtain a degree distribution that is in agreement with the data collected from

social studies about friendship networks in schools. Although the outcomes from

both models are consistent with collected data, none have dealt with weight distri-

butions in social networks.

We believe that link weights are crucial for communities in cyberspace since

it is easy to send a single e-mail to a person and only observations of frequent

e-mail exchange reveal the significance of real social relations. Their dynamics are

obviously driven by affective phenomena that are introduced in our approach in a

simplified way.

2. Network Structure

We construct an evolving, directed, weighted network of agents in an artificial

community where weight wij(t) is the number of messages that person j has already

received from person i up to the time moment t. Generally there is wij(t) 6= wji(t)

which means that a link form i to j can have a different weight than a link from j

to i. Initially, we start with a fully connected network of N agents. The number of

aEmotion definition proposed by Arvid Kappas cyberemotion internal material.



May 20, 2010 14:54 WSPC/141-IJMPC S012918311001535X

Flow of Emotional Messages in Artificial Social Networks 595

agents is fixed in time. We shall try to model flows of positive emotional messages

among the agents; however, our model can be generalized to cases where both

positive and negative emotional messages are communicated. The initial condition

is a fully connected network of agents where every link possesses the same weight,

wij(0) = 1. This means that at the very beginning, each group member sent a

polite message, such as Hello Partner, to every other group member; thus, the

initial weight probability distribution is P (w) = δw,1. During the evolution process

weights become heterogeneous.

3. Models of Emotional Message Transfer in a Group

To model a process of emotional message transfer in our e-community, we use

several variants of the updating rules, starting with the simplest and most trivial

cases and then moving to more complex and more realistic solutions. Our main

goal is to determine the most important characteristics of this toy model, which

will eventually allow us to look for similarities to real-world data in the future.

3.1. Model 0

Model 0 is a trivial case where in every timestep we randomly choose a sender, i,

of an emotional message and then randomly find the recipient, j. This processes

an increase in the number of transferred messages between nodes i and j so that

wij(t+1) = wij(t)+1. In such an approach, the fact that messages contain emotional

content that can influence agents’ actions has no impact. This simple updating

procedure gives the Poisson distribution of weights P (w) = λwe−λ/w!, where λ =

Tp, T is the simulation time, and p = 1/N(N − 1).

3.2. Model I — with infinite memory

Unlike the previously described version, Model I is equipped with a memory of

emotions that were communicated between agents. We randomly find the sender

(agent i) and then we choose a recipient for his emotional message (agent j) using

a preferential rule. The agent decides to whom he wants to send a message, tak-

ing into account the complete history of communications with other agents. The

selection probability is proportional to the number of past messages transferred

between nodes j and i. The reason for this rule is that the agent i makes a stronger

(emotional) contact with the group members who have already sent him many mes-

sages. Here, we stress the fact that, for simplicity, all messages express only positive

emotions. In the continuous time approximation, our rule of communications will

lead to the following equation for changes of the weights wij(t):

∂wij(t)

∂t
=

wji(t)

sin
i (t)

1

N
. (1)

Here, sin
i (t) is the temporal incoming strength of node i defined as sin

i (t) =
∑

j wji(t). Numerical results show that with good agreement we can say wij ≈ wji
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and

∂wij(t)

∂t
=

wij(t)

sout
i (t)

1

N
, (2)

where sout
i =

∑

j wij can be estimated as sout
i (t) ≈ 〈sout〉(t). However, the mean

value of node strength is 〈sout〉(t) = (N(N −1)+ t)/N = t/N +N −1. The number

of links in our problem is constant, similar to the number of nodes in Barabási–

Albert model B,26 in which the authors applied the preferential attachment rule

without adding new nodes. In our case, we assume a preferential increase of directed

weights. In the above-mentioned model B, the degree of node is proportional to t,

i.e. ki(t) ∼ t for t > N . In our problem, mean-field-like analysis, i.e. substituting

sout
i with t/N + N − 1, and putting it to Eq. (3) leads to the equation:

wij(t) =
N(N − 1) + t

N(N − 1) + 1
≈ exp

(

t − 1

N(N − 1)

)

, (3)

which is correct for large values of N and t � N 2, where we used the initial

condition wij(t = 1) = 1. The process of weight increase is very slow in the case of

large systems.

Observing the weight distributions P (w) after T steps of simulation, we found

that it follows an exponential behavior with a characteristic exponent α:

P (w) = A exp(−αw) . (4)

In Fig. 1, we present examples of weight distributions for different values of the

time of simulation T for networks with N = 1000. A more detailed analysis of the

dependence of exponent α on the total time divided by the system size T/N 2 is

shown on the right-hand side of Fig. 1. As one can see, the value of α decreases with

T/N2 following a power-law behavior α ∼ (T/N 2)−β , where two different regions

of scaling can be distinguished.
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Fig. 1. The weight distribution is shown on the left, and the relationship between the parameter
α and T/N(N − 1) is shown on the right (Model I).
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3.3. Model II — with temporary memory

We develop Model I by introducing the concept of memory length. This approach

allows us to consider a more realistic situation in which users forget very remote

past events and make their decisions based only on the last transfer of messages. The

updating procedure is almost identical to that in Model I, except that the selection

probability is proportional to the number of past emotional messages transferred

between nodes j and i in the last cN steps:

∂wij(t)

∂t
=

wji(t) − wji(t − cN)

sin
i (t) − sin

i (t − cN)

1

N
. (5)

We observe how the weight distribution changes with parameters T and c. In

the case of c < 3 for small values of wij the distribution P (wij) decreases while

for larger wij , one can observe a Gaussian-like peak with the mean value equal to

T/N (see Fig. 2). The value c = 3 is a transition point; here, the two parts of the

distribution merge, i.e. the Gaussian peak is absorbed by the decreasing part. For

c > 5, there are once again traces of the Gaussian curve. For larger values of c

(e.g. c = 20 and c = 50), the Gaussian part is completely invisible. To measure

the evolution of weight distribution with changing memory length, we analyze the

standard deviation defined as

σ =

√

1

N(N − 1)

∑

ij

(wij − 〈w〉)2 , (6)

where 〈w〉 = (1/N(N − 1))
∑

ij wij is the average weight of a link. The analysis

confirms our previous observation that the lengths of memory c = 3 and c = 5

are transition points; in the standard deviation analysis, those points form local

minimum and maximum, respectively (see Fig. 3).
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Fig. 2. Weight distribution for T = 300N and N = 1000; 20 trials (Model II).
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Fig. 3. Standard deviation as a function of the length of memory (T = 300N , N = 1000; 20 trials
(Model II)).
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Fig. 4. Weight distribution, for N = 1000 and T = 300N ; 20 trials (Model II).

For larger values of c, for example c = 50, we observed the following behavior:

for T = 100N , the character of the distribution is close to exponential (without the

first point, which is dependent on the initial conditions), while for T = 450N , a fat

tail with exponential cutoff is visible (see Fig. 4).

3.4. Model III — with secondary social sharing

Secondary social sharing is a phenomenon widely described in psychology. Accord-

ing to the famous researcher of this problem, Bernad Rimé,35–37 “First, it was
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Fig. 5. Scheme of secondary social sharing process.

10
0

10
1

10
2

10
3

w

10
-2

10
0

10
2

10
4

10
6

av
er

ag
e 

nu
m

be
r 

of
 o

cc
ur

re
nc

es c = 1
c= 3
c = 5
c = 20 

Fig. 6. Weights distribution, for N = 1000 and T = 300N ; 10 trials (Model III).

predicted that being exposed to the social sharing of an emotion is emotion-inducing.

Second, it was reasoned that if this holds true, then the listener should later engage

in socially sharing with other persons the emotional narrative heard. Thus, a pro-

cess of ‘secondary social sharing’ was predicted.” It was also proved by Rimé,36 that

the probability of social sharing phenomenon increases with the level of triggering

emotions.

We try to adapt this phenomenon in order to extend our Model II. As the level

of emotion is not considered in our models, we assumed that a secondary person

shares the emotional message with only one person (see Fig. 5). We randomly find

a sender of a message and find the receiver using the rule from Model II. This

receiver will then send a message to the next person, using the same rule. The

results obtained for this version of the model (see Fig. 6) are similar to Model

II (see Fig. 2) with temporary memory; we also observe the decreasing part and

Gaussian behavior for the small value of c. A new feature of this distribution is an

additional peak, for c = 5.

3.5. Model IV — chain letter

In this version, we assume that one user can send several emotional messages and

one of their recipients becomes the sender of the next emotional message. The

basic preferential rule with memory is still the same. We randomly select a user



May 20, 2010 14:54 WSPC/141-IJMPC S012918311001535X

600 A. Chmiel & J. A. Ho lyst

10
0

10
1

10
2

10
3

10
4

10
5

w

10
-3

10
0

10
3

10
6

av
er

ag
e 

nu
m

be
r 

of
 o

cc
ur

re
nc

es c = 1
c = 4
c = 10
c = 30
~w

-1.4

~w
 -1.5

~w
- 1.6

Fig. 7. Weights distribution, for N = 1000 and T = 300N ; 10 trials (Model IV).

and randomly find the number of users to whom this agent sends a message. One

of the recipients will send the message to a random number of users, which creates

a chain of messages. The weighted distribution obtained from this version of the

model is presented in Fig. 7. For c < 30, we can find a power-law scaling in the

central regime (the first point is due to the influence of the initial condition and at

the end, one observes an exponential cutoff). This behavior is qualitatively different

from those in all previous cases. The introduction of the chain rule plays a pivotal

role here. One can see the similarity to the random walk problem in a weighted

network.14

4. Conclusions

We analyzed several models of communicating emotional messages in artifi-

cial e-communities that are described by directed weighted networks, where the

weights/strengths of links correspond to the total number of messages sent from

one agent to another. Model 0 assumes a random evolution of link strengths, wij(t),

and as a result, the distribution P (w) is Poissonian. In Model I, we assumed that

messages possess an emotional character with a positive valence and that the will-

ingness to send an affective message to a given person increases linearly with the

number of messages already received from this person. As a result, we obtain an ex-

ponential behavior of P (w), where the characteristic exponent depends in a unique

way on T/N2 (N is a network size and T is a network age). Introduction of a

limited memory length c into Model II significantly changes the distributions P (w)

that become the sum of the monotonically decaying part and a Gaussian peak. For

larger values of the memory window c, the peak merges with the monotonic part.

The effects of secondary social sharing phenomena were considered in Model III;
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however, the results were similar to those of Model II. In Model IV, we assumed

a chain rule form of e-mail transmissions that resulted in the power-law behavior

of P (w). The assumption of the finite memory length in Model II can be specific

for some e-services where only limited temporal access to previously exchanged

messages exists.
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A.-L. Barabási and J. Kertész, New J. Phys. 9, 179 (2007).
34. J. M. Kumpula, J.-P. Onnela, J. Saramaki, K. Kaski and J. Kertész, Phys. Rev. Lett.

99, 228701 (2007).
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